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PART I



PreCHiFT

First Lecture
I ”Jak to ze lnem było...” ⇒ Rather about σ-linear model than about ChiFT

today.
I SUL(2)× SUR (2) � SUA(2)× SUV (2);
I Goldberger-Treiman Relation � PCAC;
I

SUA(2)× SUV (2) →︸︷︷︸
Symmetry−Breaking

SUV (2);



Motivation
I Single Pion Production in ν-N, and ν-A scattering and other applications...

Chiral Field Theory, as the most standard example of the Effective Field
Theory
”The purpose of the effective lagrangian method is to represent in a simple way the dynamical content of a theory
in the low energy limit, where effects of the heavy particles can be incorporated into a few constants.”
Dynamics of the Standard Model, Donoghue, Golwich, Holstein

General Plan of Attack
I Propose the most general set of lagrangians consistent with the symmetries of

the theory, as well as with the symmetry breaking patterns of the general model
(in our case QCD);

I At low energies the relevant, effective degrees of freedom in QCD are no longer
the elementary quarks and gluons, but composite hadrons.



QCD as a reference model for understanding the strong interactions

QCD as the SU(N) gauge field theory

LQCD = iqf D̂qf − qfMqf −
1
2

TrGµνGµν , (1)

where qf is the SU(N) vector field, containing N Dirac spinors, describing N quarks.
M is the mass matrix.

D̂ = γµ (∂µ − igAµ) (2)
Gµν = ∂µAν − ∂νAµ − ig [Aµ.Aν ] (3)

Aµ =

N2−1∑
a=1

Aa
µT a (4)

and T a’s are the su(N) generators.



What about Global Symmetries?
I U(1) global symmetry;
I If one assumes that the quarks have the same masses:

I SU(N) global symmetry.
qf → Uqf , U ∈ SU(N).

I In reality mu ≈ md : SU(2) global isospin symmetry.



Left-,Right- handed chiral operators

PL =
1
2

(1− γ5) , PR =
1
2

(1 + γ5) . (5)

Notice that

PLPR = PRPL = 0, P2
L = PL, P2

R = PR , qi,L(R) = PL(R)qi (6)

Than we have trivially obtained formulae:

qi = qi,L + qi,R , qiqi = qi,Lqi,R + qi,Rqi,L, qiγµqi = qi,Rγµqi,R + qi,Lγµqi,L. (7)



Limit mf → 0 SU(N)→ SUL(N)× SUR(N)

The massless quark QCD lagrangian reads

LQCD = iqf ,LD̂qf ,L︸ ︷︷ ︸
SU(N)−lefthanded

+ iqf ,R D̂qf ,R︸ ︷︷ ︸
SU(N)−righthanded

−
1
2

TrGµνGµν . (8)

SUL(N)× SUR(N)
one can introduce the SU(N)L and SU(N)R matrices

UL,R = PL,R exp

i N2−1∑
a=1

θaL,RT
a

 , (9)

θL,R ’s are the real numbers.



The Lagrangian formalism

Consider the model defined by the action:

S =

∫
V
d4L(φi , ∂φi ), δS = 0? (10)

It is convenient to assume the Drichlet (worked in Wrocław for a while) conditions
i.e. the initial and final field configurations are known

0 =
δL
δ∂0φ

∣∣∣
t=ti

=
δL
δ∂0φ

∣∣∣
t=tf

=
δL
δ∂~φ

∣∣∣∣
∂V

. (11)

It leads to the Euler-Lagrange equations:

0 =
δL
δφi
− ∂µ

δL
δ∂µφi

. (12)



Canonical Momentum, Hamiltonian, and quantization

Canonical Momentum

Πj (x , t) =
δL

δ(∂0φj )
(13)

Hamiltonian

H =
∑
i

πi∂0φi − L (14)

Quantization

[φi (x , t),Πj (y , t)] = iδijδ(3)(x − y) (15)



Symmetry and Noether Currents

Symmetry of the model
SU(2) is generated by 3 Pauli matrices

SU(2) 3 U ≈ 1 + i
3∑

a=1

θa
τ a

2
,

[
τ a

2
,
τb

2

]
= iεabc

τ c

2
, θa ∈ R (16)

We can impose on the model two types of the symmetry:
I the invariance of the action (used in the energy-tensor derivation):

δGS = 0? (17)

I the invariance of the lagrangian (the second case is more often met! e.g.
isospin symmetry).

δSU(2)L = 0, (18)



Noether Current

δSU(2)φi ≈ iθa
τ aij

2
φj (19)

Jµa =
δL

δ(∂µφi )
i
τ aij

2
φj︸ ︷︷ ︸

Conserved−Noether−Current

, 0 = ∂µJµa , (20)

Ja0 = iΠi
τ aij

2
φj , Qa =

∫
d3xJa0 (x)︸ ︷︷ ︸

conserved charged

(21)

Useful Properties [
Qa,Qb

]
= iεabcQc , [Qa, φi ] = i

τ aij

2
φj (22)

Current operators form the basis of the su(2) Lie group algebra.



Goldstone Theorem

Consider the global continues symmetry group G 3 U, and assume that the H0 is
invariant under it.

UH0U† = H0. (23)

It leads to the natural degeneracy of the energy eigenstates.
Let | 0〉 is the ground state. If

U | 0〉 6=| 0〉 (24)

we have the spontaneous symmetry breakdown.

⇒ ta | 0〉 6=| 0〉 ⇒ Qa | 0〉 6=| 0〉 ⇒ 〈0 | φi | 0〉 6= 0. (25)



Quantum Mechanical Example

The infinite and finite wall potentials
I For the infinite potential case, the initial condition breaks spontaneously the

parity symmetry!
I For the finite potential case, the tunneling of the particle is possible!



Goldstone Theorem in the SU(2) case
The breaking the global SU(2) symmetry leads to the existence in the formalism three
(number of generators of the broken group) massless bosons. It is manifested by the
non-vanishing the matrix elements:

〈n | φ(0) | 0〉 6= 0, 〈n | J(0) | 0〉 6= 0. (26)



Goldstone Theorem

Classical Level
If

L = L0 − V ,⇒H = H0 + V . (27)

I The configuration which minimizes the potential will correspond to the ground
state;

I In reality in order to perform the perturbation calculus one needs to consider
small deviations from the minimal configuration.

Quantum Level
Much more complicated and need of special seminar to explain. The effective
potential formalism.



Back to QCD for a moment...

The symmetry breaking mechanism will introduce massless particles.

SU(N)L × SU(N)R → SU(N). (28)

According to Goldstone theorem N2 − 1 goldstone massless bosons have appeared.

SUL(2)× SUR(2) global symmetry pattern
I

SU(2)L × SU(2)R → SUV (2). (29)
I SU(2) (isospin gropu) has three generators → three massless pions (π+, π0, π−);
I Notice the appearance of the natural symmetry breaking mechanism in the QCD

– quarks are massive.



Late fifties: π’s, µ- and β- decays

Historical Perspective
I Introduced to describe the strong interactions between nucleons in the nuclei

(Yukawa, (1935), Nobel Prize (1949))
I Experimentally observed, (Powell et al., (1947), Nobel Prize (1950)) ;
I Pions carry the strong attractive interaction between pair of nucleons;
I Pions belong to the adjoint representation of the SU(2) isospin group (triplet

representation), while quarks up and down belong to the fundamental
representation of the SU(2) group.

I Pions are massive.
I Fermi Model: muon-decay, and beta-decay;
I Goldberger-Treiman Relation (1958);
I Universality of the vector constant → Conserved Vector Current, Feynman,

Gell-Mann (1958);
I Partially Conserved Axial Current – divergence of the axial current, Nambu

(1960), Chou (1961), Gell-Mann and Levy (1960);



What effective theory we are searching for?

I Containing Pions as the fundamental degrees of freedom;
I Containing Nucleon fields, and the pion-Nucleon vertex in the lagrangian.
I The model must preserve the chiral symmetry (in the simplest case

SUL(2)× SUR(2)) with the symmetry breaking mechanism (→ SUV (2));
I The mechanism for generation of the pions and nucleons masses.
I Extension of the model in order to include heavier baryons, and strange particles...



σ-models

Historical Origin
I Schwinger 1958, Polkinghorne 1958, Gell-Mann and Levy 1960;
I Model with pions and nucleons;
I Model which reproduces the Goldberger-Treiman formula (1958);

I β and µ decays, by the same axial current;
I divergence of the axial current;
I relation between Gp(Q2) axial form factor and the FπNN form factor.



linear σ model

lagrangian
σ isoscalar field, and three pions πi , i=1,2,3 (pseudoscalars)

Ll−σ(x) =
1
2

[∂µσ∂
µσ + ∂µ~π · ∂µ~π] + Niγµ∂µN − gN (σ + iγ5~τ · ~π)N − V (σ, ~π),

(30)

V (σ, ~π) = −
µ2

2
(
σ2 + ~π2

)
+
λ

4
(
σ2 + ~π2

)2
. (31)

N = (p, n): the nucleon 1/2 isospin filed
With right/left-handed fermion fields we get:

L(x) =
1
2

[∂µσ∂
µσ + ∂µ~π · ∂µ~π] + NLiγµ∂µNL + NR iγµ∂µNR

−gNL (σ + i~τ · ~π)NR − gNR (σ − i~τ · ~π)NL − V (σ, ~π) (32)

I Model with massless nucleon fields, and massless meson fields;
I We need to generate the nucleon mass, may be pion masses?



It is convenient to introduce the 2× 2 matrix to describe the meson fields in the
collective way:

Σ = σ + i~τ · ~π. (33)

Then the lagrangian can be rewritten as it follows:

L(x) =
1
4

Tr
[
∂µΣ∂µΣ†

]
+ NLiγµ∂µNL + NR iγµ∂µNR − gNLΣNR − gNRΣ†NL

+
µ2

4
Tr
(

ΣΣ†
)
−

λ

16
Tr
(

ΣΣ†
)2
. (34)



SUV (2) invariance of σ-linear model

SUV (2) 3 V = exp
[ i
2
~τ · ~θ
]

(35)

The nucleon and meson fields transform like

N → N′ = VN, NL,R → N′L,R = VNL,R , Σ→ Σ′ = VΣV † (36)

It is easy to compute that

δN ≈ N′ − N = i
~τ · ~θ
2

N (37)

Σ′ '
(
1 + i

~τ · ~θ
2

)
(σ + i~τ · ~π)

(
1− i

~τ · ~θ
2

)
= σ −

[
~τ · ~θ
2
, ~τ · ~π

]
= σ + i~τ · ~π − i(~θ × ~π) · ~τ, (38)[

~τ · ~θ
2
, ~τ · ~π

]
= 2θiπk

[
τi
2
,
τk
2

]
= 2iεikj

τj

2
θiπ

k = i(~θ × ~π) · ~τ. (39)

We see that:

δΣ = δσ + i~τ · δ~π (40)
δσ = 0, (41)
δ~π = −~θ × ~π. (42)



Vector Noether Current

~θ · ~Vµ =
∂L

∂(∂µN)
δN +

∂L
∂(∂µσ)

δσ +
∂L

∂(∂µπ)
δπ (43)

= −Nγµ
~τ · ~θ
2

N − ∂µ~π · (~θ × ~π) (44)

~Vµ = −Nγµ
~τ

2
N − ∂µ~π × ~π (45)

Vµk = −Nγµ
τk
2
N − ∂µπi εijkπj (46)

= −NγµTF
k N︸ ︷︷ ︸

Fundamental

− ∂µ~πTTA
k ~π︸ ︷︷ ︸

Adjont

(47)



SUA(2) invariance

A = exp
[
i
~β · ~τ
2

γ5

]
. (48)

The fields transform as

N → N′ = AN, N′L = ANL = V †NL, N′R = ANR = VNR . (49)

here

V = exp
[
i
~β · ~τ
2

]
. (50)

Notice that in order to get the expression(
NLΣNR

)′
= N′LΣ′N′R = NLVΣ′VNR (51)

invariant, one needs Σ field transforms like

Σ→ Σ′ = V †ΣV †. (52)



Now the variance of the nucleon filed reads

δ5N = i
~β · ~τ
2

γ5N (53)

The variation of the mesons fields read

Σ′ '
(
1− i

~τ · ~β
2

)
(σ + i~τ · ~π)

(
1− i

~τ · ~β
2

)
(54)

= σ + i~τ · ~π − 2i
~τ · ~β
2

σ +
~τ · ~β
2

~τ · ~π + ~τ · ~π
~τ · ~β
2

(55)

= σ + i~τ · ~π − i~τ · ~βσ︸ ︷︷ ︸
it is in σ basis

+ ~π · ~β︸︷︷︸
it is proportional to1

. (56)

The so-called ”axial” variation of the σ and pions fields read

δ5Σ = δ5σ + i~τ · δ5~π (57)
δ5σ = ~π · ~β (58)
δ5~π = −~βσ. (59)



Axial Noether Current

Now the axial current reads

~β · ~Aµ =
∂L

∂(∂µN)
δN +

∂L
∂(∂µσ)

δσ +
∂L

∂(∂µπ)
δπ (60)

= −Nγµ
~τ · ~β
2

γ5N + ∂µσ~π · ~β − ∂µ~π · ~βσ (61)

~Aµ = −Nγµ
~τ

2
γ5N + ∂µσ~π − σ∂µ~π. (62)



SUL(2)× SUR(2)
Lagrangian Once Again

L(x) =
1
4

Tr
[
∂µΣ∂µΣ†

]
+ NLiγµ∂µNL + NR iγµ∂µNR − gNLΣNR − gNRΣ†NL

+
µ2

4
Tr
(

ΣΣ†
)
−

λ

16
Tr
(

ΣΣ†
)2
. (63)

NR → N′R = RNR (64)
NL → N′L = LNL (65)
Σ → Σ′ = LΣR† (66)
→ LΣ (67)
→ ΣR†, (68)

where the right- and left- handed transformations are defined as it follows

R = exp
[
i
i~γ · ~τ
2

]
, and L = exp

[
i
i~η · ~τ
2

]
(69)

I with γ = η = θ for the vector transformations;
I with γ = −η = β for the axial transformations;



Righthanded Current

N′R '
[
1 + i

~γ · ~τ
2

]
NR = NR + i

~γ · ~τ
2

NR (70)

N′L = NL (71)

Σ′ = ΣR† ' (σ + i~τ · ~π)

[
1− i

~γ · ~τ
2

]
= Σ− iσ

~γ · ~τ
2

+
(~τ · ~π)(~γ · ~τ)

2
(72)

= Σ− iσ
~γ · ~τ
2

+
~π · ~γ
2

+ i
(~π × ~γ) · ~τ

2
(73)

Hence, we have

δRNR = i
~γ · ~τ
2

NR (74)

δRNL = 0 (75)

δRσ =
~π · ~γ
2

(76)

δR~π = −σ
~γ

2
+
~π × ~γ
2

(77)



Lefthanded Current

Similarly we perform computations for the left-handed symmetry, namely

δLNL = i
~η · ~τ
2

NL (78)

δLNR = 0 (79)

δLσ = −
~π · ~η
2

(80)

δL~π = σ
~η

2
+
~π × ~η
2

(81)



The Vector-Axial and Left-Right-Handed Currents

The Neother currents read

−~Rµ = −NRγ
µ ~τ

2
NR +

1
2
∂µσ~π +

[
~π × ∂µ~π

2
−

1
2
σ∂µπ

]
(82)

−~Lµ = −NLγ
µ ~τ

2
NL −

1
2
∂µσ~π +

[
~π × ∂µ~π

2
+

1
2
σ∂µπ

]
(83)

(84)

Notice relation with the vector and axial currents

~Vµ = Rµ + Lµ = Nγµ
~τ

2
N − ~π × ∂µ~π (85)

~Aµ = Rµ − Lµ = Nγµγ5
~τ

2
N − ∂µσ~π + σ∂µπ (86)



Charged Generators

Let define charge operators, defined as

Qi =

∫
d3xV i

0(x), Q5i =

∫
d3xAi

0(x). (87)

With the help of relation:

ΠN = N†, {Ns(x , t),N†r (y , t)} = δ3(x − y)δsr , N = p or n. (88)
Ππi = ∂0π

i , [πi (x , t),Ππj (y , t)] = iδijδ3(x − y), (89)

Πσ = ∂0σ, [σ(x , t),Πσ(y , t)] = iδ3(x − y), (90)

[AB,CD] = −AC {D,B}+ A {B,C}D − C {A,D}+ {C ,A}DB (91)

one gets
[Qi ,Qj ] = iεijkQk (92)

In the same way one can show that

[Qi ,Q5j ] = iεijkQ5k , [Q5i ,Q5j ] = iεijkQk (93)
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