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Neutrino oscillation experiments
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Detected rate of να events

Rνα ∼ Φνµ (Eν)× Pνµ→να ({Θ},Eν)× σνα (Eν)× εdet.
Event rate Incoming flux Oscillation probability Cross section Efficiency

Knowledge of neutrino-nucleus cross sections:

→ allows to reconstruct neutrino energy
from the detected final states,

→ is the crucial uncertainty in oscillation
analyses,

but...

→ is an advanced computational problem,

→ current precision is not exceeding 20%,

→ constraints from ND are not enough.

K. Abe et al., Phys.Rev.Lett. 121 (2018) 171802 (edited)
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Nuclear response
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Dimensionality of the problem

kµ

kν

(ω,q)

pn

pp

any binary scattering with on-shell particles

4 four-vectors = 16 variables

- 4 : on-shell relations

- 4 : 4-mom. conservation

- 3 : nucleon rest frame

- 2 : neutrino along ẑ

3 independent variables

→ we can fix incoming energy (Eν )

→ the cross section is rotationally invariant (φµ)

→ the final formula is 1-dimensional, e.g. dσ/dq2
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Dimensionality of the problem

kµ

kν

(ω,q)

pn

pp

pi

scatterings including an off-shell target

3 independent variables

+ 3 : nucleus rest frame

+ 1 : off-shell nucleon

7 independent variables

+ 3 : every on-shell particle

→ we can fix incoming energy (Eν )

→ the cross section is rotationally invariant (φµ)

→ the final formula is at least 5-dimensional
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Computing νA cross section

Monte Carlo generator

→ generate events

→ cover whole phase space

→ useful but approximated

e.g. NuWro
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Figure 4.4: The 12C(e, eÕNaNb) cross section (Na = p, Nb = pÕ, n) at ‘e = 1200 MeV,
‘eÕ = 900 MeV, ◊eÕ = 16¶ and Tp = 50 MeV for in-plane kinematics. Left with SRCs, right
with MECs, the bottom plot shows the (◊a, ◊b) regions with P12 < 300 MeV/c.

Figure 4.5: The 12C(‹µ, µ≠NaNb) cross section (Na = p, Nb = pÕ, n) at ‘‹µ = 750 MeV,
‘µ = 550 MeV, ◊µ = 15¶ and Tp = 50 MeV for in-plane kinematics. Left with SRCs, right
with MECs, the bottom plot shows the (◊a, ◊b) regions with P12 < 300 MeV/c.
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Detailed calculation

→ compute cross sections

→ fixed kinematics

→ precise but expensive

e.g. Ghent group
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Contents

• History of 2p2h modeling

• Theoretical formalism of the Ghent group

◦ Kinematics

◦ Nucleon wave functions

◦ Short-range correlations

◦ Meson-exchange currents

• Experimental prospects

T. Van Cuyck, N. Jachowicz, R. González-Jiménez et al., Phys.Rev.C 95 (2017) 054611

T. Van Cuyck, N. Jachowicz, R. González-Jiménez et al., Phys.Rev.C 94 (2016) 024611
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The MiniBooNE puzzle

An attempt to make a pure CCQE measurement...

8

Graphic from S. Dolan

What do we actually measure?

Many modes 
contribute to any 

measurement

Integrated over 
broad ω region

Difficult to tune 
theory models!

S. Dolan
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The MiniBooNE puzzle

An attempt to make a pure CCQE measurement...
→ suffered from huge model dependencies

L. Alvarez-Ruso, Nucl.Phys.B Proc.Suppl. 229-232 (2012) 167-173 (Neutrino 2010)
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The theoretical framework:
language of response functions
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Cross section formula

CC νA scattering
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(b) CC ‹A scattering.

Figure 2.2: Feynman diagrams for lepton-nucleon scattering processes.

The lepton and hadron currents are defined as

J lep
µ (q) © u(kf , sf ) ‚J lep

µ u(ki, si) = u(kf , sf ) “µ(1 + h“5)u(ki, si), (2.16)
J nuc
µ (q) © È �f | ‚J nuc

µ (q) |�i Í, (2.17)

where we introduced the Dirac spinors u(ki, si) and u(kf , sf ) for the incoming and
scattered lepton. The |�i Í and |�f Í refer to the initial and final nuclear states
and the operators ‚J lep

µ and ‚J nuc
µ (q) are the lepton and nuclear current operators in

momentum space. The structure of the nuclear current operator will be discussed
throughout this work.

The lepton current operator is known exactly from field theory. In the lepton current,
h = 0 for (unpolarized) electron scattering and h equals ≠(+) for neutrino (anti-
neutrino) interactions, reflecting the V ≠ A structure of the weak interaction. By
convention, the factor 1/2 of the spin-projection operator (1 + h“5)/2 is absorbed in
the weak coupling constant.

For the nuclear current, we rely on the rules corresponding to the Feynman rules
but for nuclear physics [7–9], as bound states cannot be described in field theory.
These nuclear current matrix elements are the building blocks of the nuclear responses
and will be at the center of our modeling e�orts. They contain all the dynamical
information of the electromagnetic or electroweak interaction.
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Figure 2.2: Feynman diagrams for lepton-nucleon scattering processes.

The lepton and hadron currents are defined as

J lep
µ (q) © u(kf , sf ) ‚J lep

µ u(ki, si) = u(kf , sf ) “µ(1 + h“5)u(ki, si), (2.16)
J nuc
µ (q) © È �f | ‚J nuc

µ (q) |�i Í, (2.17)

where we introduced the Dirac spinors u(ki, si) and u(kf , sf ) for the incoming and
scattered lepton. The |�i Í and |�f Í refer to the initial and final nuclear states
and the operators ‚J lep

µ and ‚J nuc
µ (q) are the lepton and nuclear current operators in

momentum space. The structure of the nuclear current operator will be discussed
throughout this work.

The lepton current operator is known exactly from field theory. In the lepton current,
h = 0 for (unpolarized) electron scattering and h equals ≠(+) for neutrino (anti-
neutrino) interactions, reflecting the V ≠ A structure of the weak interaction. By
convention, the factor 1/2 of the spin-projection operator (1 + h“5)/2 is absorbed in
the weak coupling constant.

For the nuclear current, we rely on the rules corresponding to the Feynman rules
but for nuclear physics [7–9], as bound states cannot be described in field theory.
These nuclear current matrix elements are the building blocks of the nuclear responses
and will be at the center of our modeling e�orts. They contain all the dynamical
information of the electromagnetic or electroweak interaction.

23

Currents:

J lep
µ (q) ≡ ū(kf , sf )Ĵ lep

µ u(ki , si) = ū(kf , sf )γµ(1 + hγ5)u(ki , si)

J nuc
µ (q) ≡ 〈Ψf | Ĵnuc

µ |Ψi〉

where h = 0 for (unpolarized) electrons, and h = −(+) for (anti)neutrinos
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Cross section formula

CC νA scattering

e(‘e,ke)
A(EA,pA)

eÕ(‘eÕ ,keÕ)

“ú(Ê, q)
igµ‹

Q2

B(EB,pB)

ieJ µ
lep(q) ≠ ieJ ‹

nucl(q)

(a) eA scattering.

‹(‘‹ ,k‹)
A(EA,pA)

µ(‘µ,kµ)

W±(Ê, q)
igµ‹

M2
W

B(EB,pB)

≠ i q

2
Ô

2J
µ
lep(q) ≠ i q

2
Ô

2 cos ◊cJ ‹
nucl(q)

(b) CC ‹A scattering.

Figure 2.2: Feynman diagrams for lepton-nucleon scattering processes.

The lepton and hadron currents are defined as

J lep
µ (q) © u(kf , sf ) ‚J lep

µ u(ki, si) = u(kf , sf ) “µ(1 + h“5)u(ki, si), (2.16)
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scattered lepton. The |�i Í and |�f Í refer to the initial and final nuclear states
and the operators ‚J lep

µ and ‚J nuc
µ (q) are the lepton and nuclear current operators in

momentum space. The structure of the nuclear current operator will be discussed
throughout this work.

The lepton current operator is known exactly from field theory. In the lepton current,
h = 0 for (unpolarized) electron scattering and h equals ≠(+) for neutrino (anti-
neutrino) interactions, reflecting the V ≠ A structure of the weak interaction. By
convention, the factor 1/2 of the spin-projection operator (1 + h“5)/2 is absorbed in
the weak coupling constant.

For the nuclear current, we rely on the rules corresponding to the Feynman rules
but for nuclear physics [7–9], as bound states cannot be described in field theory.
These nuclear current matrix elements are the building blocks of the nuclear responses
and will be at the center of our modeling e�orts. They contain all the dynamical
information of the electromagnetic or electroweak interaction.
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Figure 2.2: Feynman diagrams for lepton-nucleon scattering processes.

The lepton and hadron currents are defined as

J lep
µ (q) © u(kf , sf ) ‚J lep

µ u(ki, si) = u(kf , sf ) “µ(1 + h“5)u(ki, si), (2.16)
J nuc
µ (q) © È �f | ‚J nuc

µ (q) |�i Í, (2.17)

where we introduced the Dirac spinors u(ki, si) and u(kf , sf ) for the incoming and
scattered lepton. The |�i Í and |�f Í refer to the initial and final nuclear states
and the operators ‚J lep

µ and ‚J nuc
µ (q) are the lepton and nuclear current operators in

momentum space. The structure of the nuclear current operator will be discussed
throughout this work.

The lepton current operator is known exactly from field theory. In the lepton current,
h = 0 for (unpolarized) electron scattering and h equals ≠(+) for neutrino (anti-
neutrino) interactions, reflecting the V ≠ A structure of the weak interaction. By
convention, the factor 1/2 of the spin-projection operator (1 + h“5)/2 is absorbed in
the weak coupling constant.

For the nuclear current, we rely on the rules corresponding to the Feynman rules
but for nuclear physics [7–9], as bound states cannot be described in field theory.
These nuclear current matrix elements are the building blocks of the nuclear responses
and will be at the center of our modeling e�orts. They contain all the dynamical
information of the electromagnetic or electroweak interaction.
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Matrix elements:

MW
fi = −i

GF√
2

cos θcJ lep
ν (q)J νnuc(q)

Mγ
fi = −i

e2

Q2J
lep
ν (q)J νnuc(q)
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For the nuclear current, we rely on the rules corresponding to the Feynman rules
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Figure 2.2: Feynman diagrams for lepton-nucleon scattering processes.
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and the operators ‚J lep
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momentum space. The structure of the nuclear current operator will be discussed
throughout this work.

The lepton current operator is known exactly from field theory. In the lepton current,
h = 0 for (unpolarized) electron scattering and h equals ≠(+) for neutrino (anti-
neutrino) interactions, reflecting the V ≠ A structure of the weak interaction. By
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For the nuclear current, we rely on the rules corresponding to the Feynman rules
but for nuclear physics [7–9], as bound states cannot be described in field theory.
These nuclear current matrix elements are the building blocks of the nuclear responses
and will be at the center of our modeling e�orts. They contain all the dynamical
information of the electromagnetic or electroweak interaction.
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The cross section is propotional to the square:

∑
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fi

∣∣2 =
G2

F

2
cos2 θcLµνHµν

∑
if

∣∣Mγ
fi

∣∣2 =
e4

4Q2 LµνHµν
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Cross section formula
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For the nuclear current, we rely on the rules corresponding to the Feynman rules
but for nuclear physics [7–9], as bound states cannot be described in field theory.
These nuclear current matrix elements are the building blocks of the nuclear responses
and will be at the center of our modeling e�orts. They contain all the dynamical
information of the electromagnetic or electroweak interaction.
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information of the electromagnetic or electroweak interaction.

23

Leptonic tensor:

Lµν ∝
(

ki,µkf ,ν + kf ,νki,µ + gµνmimf − gµνki · kf − ihεµναβkαi kβf
)

the axial term (−ihεµναβkαi kβf ) drops down for electrons (h = 0)
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Cross section formula
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Figure 2.3: The definition of the angular variables used in the 2N knockout calculations

veT = Q2

2q2 + tan2 ◊l
2 , (2.54)

veTT = ≠Q2

2q2 , (2.55)

veTL = ≠ Q2
Ô

2q3
(‘i + ‘f ) tan2 ◊l

2 , (2.56)

and the response functions Wi identical as those defined above.

2.2 Di�erential 2N knockout cross section

In this section, we develop a di�erential cross section for exclusive electron-induced
and CC muon-neutrino induced 2N knockout interactions A(l, lÕNaNb)

e+ A æ eÕ + (A ≠ 2)ú +Na +Nb, (2.57)
‹µ + A æ µ≠ + (A ≠ 2)ú +Na +Nb, (2.58)
‹µ + A æ µ+ + (A ≠ 2)ú +Na +Nb, (2.59)

where the A≠ 2 system is left in a low-lying excited state. For exclusive 2N knockout
cross sections, both emitted nucleons are detected in coincidence with the scattered
lepton. We follow the same approach as for the 1N knockout cross section and use
the same conventions as before. The outgoing nucleons are denoted by a and b with
four-vectors Pa = (Ea,pa) and Pb = (Eb,pb), Fig. 2.3 clarifies the angular conventions.

The general di�erential cross section, using the same conventions as earlier, is written
as

d‡ = mi

‘i

mf

‘f

dkf

(2fi)3
dpa

(2fi)3
dpb

(2fi)3
dpA≠2
(2fi)3

◊ (2fi)4”(4) (ki + PA ≠ kf ≠ Pa ≠ Pb ≠ PA≠2)
ÿ

fi

|Mfi|2, (2.60)

= mi

‘i

mf

‘f

1
(2fi)8 dkf dpa dpb ” (‘i +MA ≠ ‘f ≠ Ea ≠ Eb ≠ EA≠1)

ÿ

fi

|Mfi|2, (2.61)

27

In such frame of reference:

LµνWµν =
2εiεf

mimf
[vCCWCC + vCLWCL + vLLWLL + vT WT + vTT WTT + vTCWTC

+vTLWTL + h (vT ′WT ′ + vTC′WTC′ + vTL′WTL′)]
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Lepton responses

vCC = 1 + ζ cos θ

vCL = −(
ω

q
(1 + ζ cos θ) +

m2
f

εf q
)

vLL = 1 + ζ cos θ − 2εiεf

q2 ζ2 sin2 θ

vT = 1− ζ cos θ +
εiεf

q2 ζ
2 sin2 θ

vTT = −εiεf

q2 ζ
2 sin2 θ

vTC = − sin θ√
2q
ζ(εi + εf )

vTL =
sin θ√

2q2
ζ(ε2

i − ε2
f + m2

f )

vT ′ =
εi + εf

q
(1− ζ cos θ)− m2

f

εf q

vTC′ = −sin θ√
2
ζ

vTL′ =
ω

q
sin θ√

2
ζ

→ dimensionless kinematical factors
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One-nucleon knockout

dσ
dEl′dΩl′

= 4πσXζ f−1
rec
[
vCCWCC + vCLWCL + vLLWLL + vT WT + hvT ′WT ′

]
,

with vi and σX containing leptonic information, e.g.

σMott =

(
α cos (θe′/2)

2Ee sin2 (θe′/2)

)2

, σW =

(
GF cos θcEµ

2π

)2

,

and the response functions Wi containing the nuclear information

WCC = |J0|2

WCL = 2<
(
J0J †3

)

WLL = |J3|2

WT = |J+|2 + |J−|2

WT ′ = |J+|2 − |J−|2

J0 = 〈Ψf | Ĵ0(q) |Ψi〉
J+ = 〈Ψf | Ĵ+(q) |Ψi〉
J− = 〈Ψf | Ĵ−(q) |Ψi〉
J3 = 〈Ψf | Ĵ3(q) |Ψi〉
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Two-nucleon knockout

dσ
dEl′dΩl′dTadΩadΩb

= σXζ g−1
rec

×
[
vCCWCC + vCLWCL + vLLWLL + vT WT + vTT WTT + vTCWTC

+ vTLWTL + h(vT ′WT ′ + vTC′WTC′ + vTL′WTL′)
]
,

WTT = 2<
(
J+J †−

)

WTC = 2<
(
J0 (J+ − J−)†

)

WTL = 2<
(
J3 (J+ − J−)†

)

WTC′ = 2<
(
J0 (J+ + J−)†

)

WTL′ = 2<
(
J3 (J+ + J−)†

)

J0 = 〈Ψf | Ĵ0(q) |Ψi〉
J+ = 〈Ψf | Ĵ+(q) |Ψi〉
J− = 〈Ψf | Ĵ−(q) |Ψi〉
J3 = 〈Ψf | Ĵ3(q) |Ψi〉

→ integrate over outgoing nucleons
∫

dTa dΩa dΩb
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The theoretical framework:
nuclear modeling
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Nuclear model: initial state

r

E

1s1/2

1p3/2
1p1/2

protonsneutrons

1s1/2

1p3/2
1p1/2

Ea (la, 1/2, ja, δa, σa)

Eb (lb, 1/2, jb, δb, σb)

X

• Ground state nucleus is an independent-particle model (IPM)

◦ Mean-field potential results in a shell model

◦ Calculated with a Hartree-Fock (HF) approximation using a
Skyrme NN force (SkE2)

◦ Accounts for binding energies and nuclear structure
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Nuclear model: initial state

→ we iteravitely solve a radial Schrödinger equation for Rljm
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→ carbon wave functions for particular shells
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Nuclear model: final state

• Continuum wave functions are calculated using the same NN
potential

◦ Orthogonality is preserved between initial and final states

◦ Distortion effects of the residual nucleus on the ejected
nucleons are incorporated

◦ Pauli-blocking effects included inherently

is depicted by the white oval and each horizontal line depicts a nucleon in the MF
potential. The nucleon subject to the electromagnetic or weak interaction is the one
that becomes asymptotically free, but it is still under the influence of the MF potential
of the A ≠ 1 system (dashed line). This is the so-called spectator approach (SA).

In the 1N knockout calculations, long-range correlations in the nucleus were accounted
for in a continuum random phase approximation (CRPA). Photo-induced (“,N) and
electron-induced (e, eÕN) single-nucleon knockout interactions from 16O were studied
in [43–45]. These cross section calculations were extended to NC and CC neutrino-
induced interactions at energies relevant for supernova neutrinos in Refs. [46–48]. The
CC neutrino-nucleus cross sections in the CRPA approach were integrated over the
neutrino flux and compared with experimental data from MiniBooNE and T2K in
[49–52]. In this work, the long-range correlations are not considered.

A{

Nb

Na

X
FSI

}A� 2

(a) Full model

A{
Na

Nb

X

distortion

}A� 2

(b) An IPM extended with two-body currents

Figure 1.13: Graphical representation of the 2N knockout model.

The approach used for the 2N knockout calculations is shown schematically in Fig. 1.13.
The left panel shows the complete picture where a nucleon pair is emitted from an
A-body system, leaving an A ≠ 2 system behind. The right panel shows how this is
modeled in this work. The nuclear wave functions are calculated using the same MF
potential. The pair of correlated nucleons subject to the incoming lepton is described
by a two-body current (dashed circle). The two-nucleon version of the spectator ap-
proach is used, which means that the pair of nucleons that interacted with the boson
are the two nucleons which are emitted from the nucleus. Both nucleons are still sub-
ject to the MF potential of the A ≠ 2 system. In Fig. 1.14, it is shown graphically
how two-body currents influence 1N knockout cross sections: only one nucleon of the
two-body current is emitted from the nucleus.

Two-nucleon knockout cross sections were initially studied for photo-induced (“, pn)
and (“, pp) interactions in [53], where only MECs were considered. Later central
and spin-dependent correlations were introduced and electron-induced (e, eÕpn) and
(e, eÕpp) interactions were considered [54,55]. The model describes exclusive 16O(e, eÕpp)
[56,57], semi-exclusive 16O(e, eÕp) [58,59] as well as inclusive 12C(e, eÕ) and 40Ca(e, eÕ)
[60] scattering with a satisfactory accuracy. This thesis is an extension of the model
for electron-scattering interactions described above, accounting for two-body currents
in neutrino-induced 1N and 2N knockout reactions.

Several groups studied these two-body e�ects in inclusive and exclusive eA interactions.
Calculations by Alberico et al. included MECs, �-currents and correlation currents in a
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Multipole expansion

→ we perform non-relativistic reduction of operators

→ simplify integrals with multipole expansion

ρ̂(q)→ M̂Coul
JM (q) =

∫
dr [jJ(qr)YJM(Ωr )] ρ̂(r)

Ĵ3(q)→ L̂long
JM (q) =

i
q

∫
dr [∇(jJ(qr)YJM(Ωr ))] · Ĵ(r)

Ĵ±(q)→ T̂ elec
JM (q) =

1
q

∫
dr
[
∇× (jJ(qr)YM

J(J,q)(Ωr ))
]
· Ĵ(r)

→ T̂ magn
JM (q) =

∫
dr
[
jJ(qr)YM

J(J,q)(Ωr )
]
· Ĵ(r)

→ summation over J increases the accuracy of our results
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Nuclear currents in the IA

ρ̂V (r) =
A∑

i

F1(Q2)δ(3)(r− ri)τ±(i)

ρ̂A(r) =
A∑

i

GA(Q2)

2mN i
σi ·
[
δ(3)(r− ri)

−→∇ i −
←−∇ iδ

(3)(r− ri)
]
τ±(i)

ĴV (r) = Ĵcon(r) + Ĵmag(r)

=
A∑

i

F1(Q2)

2mN i

[
δ(3)(r− ri)

−→∇ i −
←−∇ iδ

(3)(r− ri)
]
τ±(i)

+
A∑

i

F1(Q2) + F2(Q2)

2mN

(−→∇ × σi

)
δ(3)(r− ri)τ±(i)

ĴA(r) =
A∑

i

GA(Q2)δ(3)σi(r− ri)τ±(i)
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One-nucleon knockout
→ multipoles contribution
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→ comparison to electron scattering data
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Short-range correlations
Fat tails in the single-nucleon momentum distribution cannot be explained
within an independent-particle model (IPM)

p (fm−1)

Log(Momentum distribution)

1 2 3

Mean-field

Fat tail: SRC!

→ Nucleons occur in pairs with high relative momenta and low
center-of-mass momenta (SRC pairs)

→ Mean-field: momenta below kF , SRC pairs: momenta above kF

→ A signature of SRC is back-to-back 2N knockout

→ SRC also have an effect on 1N knockout
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Short-range correlations
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◦ The correlations have a short range:
f (rij )→ 0 at rij > 3 fm

◦ Tensor correlation function dominates for
intermediate relative momenta 200 − 400
MeV/c

◦ Central correlation function dominates at
high relative momenta

◦ Spin-isospin correlation function overall rel-
atively small

◦ These correlation functions are input

(Gearhart, 1994), (Pieper, Wiringa, and Pandharipande, 1992)
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Short-range correlations
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J.Phys.G 42 (2015) 5, 055104
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Short-range correlations
Correlated wave functions |Ψ〉 are constructed by acting with a many-body
correlation operator Ĝ on the uncorrelated Hartree-Fock wave functions |Φ〉

|Ψ〉 =
1√
N
Ĝ|Φ〉, with N = 〈Φ|Ĝ†Ĝ|Φ〉

The central (c), tensor (tτ ) and spin-isospin (στ ) correlations are responsible for
majority of the strength

Ĝ ≈ Ŝ




A∏

i<j

[
1 + l̂(i, j)

]



with Ŝ the symmetrization operator and

l̂(i, j) = −gc(rij ) + ftτ (rij )Ŝij (~τi · ~τj ) + fστ (rij ) (~σi · ~σj ) (~τi · ~τj ) .

gc(rij ), ftτ (rij ) and fστ (rij ) are the respective correlation functions

Correlation functions: (Gearhart, 1994), (Pieper, Wiringa, and Pandharipande, 1992)
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Short-range correlations
Transition matrix elements between correlated states |Ψ〉 can be written as ones
between uncorrelated states |Φ〉, with an effective transition operator

〈Ψf |Ĵ nucl
µ |Ψi〉 =

1√NiNf
〈Φf |Ĵ eff

µ |Φi〉,

with

Ĵ eff
µ = Ĝ†Ĵ nucl

µ Ĝ =




A∏

j<k

[
1 + l̂(j, k)

]


†

Ĵ nucl
µ

(
A∏

l<m

[
1 + l̂(l,m)

])
.

In the IA, the many-body nuclear current can be written as a sum of one-body
operators

Ĵ eff
λ =




A∏

j<k

[
1 + l̂(j, k)

]


†

A∑

i=1

Ĵ [1]
λ (i)

(
A∏

l<m

[
1 + l̂(l,m)

])
.
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Short-range correlations

Use the fact that SRC is a short-range phenomenon

→ Terms linear in the correlation operator are retained

→ A-body operator→ 2-body operator

Ĵ eff
λ ≈

A∑

i=1

Ĵ [1]
λ (i)

︸ ︷︷ ︸
one−body(IA)

+
A∑

i<j

Ĵ [1],in
λ (i, j),+




A∑

i<j

Ĵ [1],in
λ (i, j)



†

︸ ︷︷ ︸
two−body(SRC)

where

Ĵ [1],in
λ (i, j) =

[
Ĵ [1]
λ (i) + Ĵ [1]

λ (j)
]

l̂(i, j)

→ Effective nuclear current is the sum of a one-body (IA) and two-body (SRC)
current
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Short-range correlations

h

X

p h

X

p

Σh′

h h′

X

pa pb h h′

X

pa pb

The 1p1h (top) and 2p2h (bottom) diagrams considered. The top left diagram
shows the 1p1h channel in the IA.
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SRC results - Inclusive 12C(νµ, µ
−)
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→ Small decrease of 1p1h channel due to SRCs

→ Inclusive 2p2h appears as a broad background to 1p1h
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Meson-exchange currents
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The seagull and pion-in-flight currents.
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Meson-exchange currents
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The ∆ currents (top) and correlation currents (bottom).

Kajetan Niewczas 2p2h Ghent 06.11.2020 36 / 44



MEC results - Inclusive 12C(νµ, µ
−)
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→ Small increase of 1p1h channel due to MECs

→ Inclusive 2p2h appears as a broad background to 1p1h
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SRS + MEC
Extend the current model with MECs
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Figure 5.4: Graphical representation of the expansion of the e�ective operator for a two-
body current.

retained. Furthermore diagrams (d-f) in which three nucleons are correlated will not
be considered. This means only diagrams of type (a), the genuine two-body currents,
and type (b), the MEC-SRC interference diagrams, will be retained. The e�ective
nuclear current that accounts for SRCs and MECs can then be written as

‚J e�
µ ¥

Aÿ

i=1

‚J [1]
µ (i) +

Aÿ

i<j

‚J [1],in
µ (i, j) +

S
U

Aÿ

i<j

‚J [1],in
µ (i, j)

T
V
†

+
Aÿ

i<j

‚J [2],MEC
µ (i, j) +

Aÿ

i<j

‚J [2],int
µ (i, j) +

S
U

Aÿ

i<j

‚J [2],int
µ (i, j)

T
V
†

, (5.14)

where the MEC-SRC interference terms, ’int’, are defined as
‚J [2],int
µ (i, j) = ‚J [2],MEC

µ (i, j)‚l(i, j). (5.15)

The Feynman diagram contributing to the 1N knockout channel is shown in Fig. 5.5a
and those feeding the 2N knockout channels in Fig. 5.5b. The exchange diagrams,
which follow from the antisymmetrization of the matrix element in second quantiza-
tion, are not shown.

In Fig. 5.6, we show how the SRCs a�ect the mean-field properties of nuclei. Both
figures are taken or adapted from [29] where a similar method to the one outlined
above was used, to study nuclear momentum distributions of nuclei. The single-
nucleon n[1](p) and two-nucleon momentum distributions n[2](k12) are shown for a
range of nuclei. The quantity n[1](p)p2dp gives the probability of finding a nucleon
with momentum p in the interval [p, p + dp] and n[2](k12)k2

12dk12 is the probability to
find a pair of nucleons with relative momentum k12 = |p1 ≠ p2|/

Ô
2 in the interval

[k12, k12 + dk12].

The low-order correlation operator approximation (LCA) used in [29] di�ers slightly
from the one outlined above as more diagrams are considered. For the calculation

73
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SRC + MEC results - Inclusive 12C(νµ, µ
−)
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→ Effect of MECs largest for small θµ, SRCs for larger θµ in 1p1h channel

→ Inclusive 2p2h appears as a broad background to 1p1h
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Comparison with MiniBooNE data

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12

14

0 200 400 600 800 1000

〈d
σ
/d
T
µ
d

co
s
θ µ
〉(

10
−
4
2
cm

2
/
M

eV
)

Tµ (MeV)

0.8 < cos θµ < 0.9

CRPA

MEC (no ∆)

SRC

Tµ (MeV)

0.4 < cos θµ < 0.5

MiniBooNE ’CCQE-like’ data from Phys.Rev.D 81 (2010) 092005

CRPA results are from Phys.Rev.C 94 (2016) 054609
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Comparison with T2K data
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Exclusive A(νµ, µ
−NaNb)
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The 12C(νµ, µ
−NaNb) cross section at ενµ = 750 MeV, εµ = 550 MeV, θµ = 15◦

and Tp = 50 MeV for in-plane kinematics (q = 268 MeV/c, xB = 0.08). The
bottom panel shows P12 < 300 MeV/c.
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Summary

→ The Ghent group provides a powerful model capable of calculating
various contributions to the 2p2h final states

→ The MEC calculation misses ∆-currents and needs to be further
developed

→ Efforts are done to implement such model in Monte Carlo event
generators so it can be used in experimental analyses
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