

Electroweak single-pion production off the nucleon: effective implementation in Monte Carlo event generators

Kajetan Niewczas

Kaietan Niewczas **[New SPP in NuWro](#page-35-0) 21.10.2019** 1/36

Nuclear response

Cross section in the factorized scheme

- **Neutrino-nucleon scattering**: elementary interaction cross section
- **Initial nuclear state:** modeling nucleons in the nuclear medium before the weak interaction
- **Extra nuclear effects:** multiple-nucleon interactions or correlations
- **Final state interactions:** in-medium outgoing particle propagation

NuWro blueprint

Pion production in NuWro

Resonant pion production

The following channels are considered:

$$
\nu + p \rightarrow l^{-} + (\Delta^{++} \rightarrow p + \pi^{+}) \qquad \bar{\nu} + n \rightarrow l^{+} + (\Delta^{-} \rightarrow n + \pi^{-})
$$

\n
$$
\nu + n \rightarrow l^{-} + (\Delta^{+} \rightarrow p + \pi^{0} \text{ or } n + \pi^{+}) \quad \bar{\nu} + p \rightarrow l^{+} + (\Delta^{0} \rightarrow p + \pi^{-} \text{ or } n + \pi^{0})
$$

\n
$$
\nu(\bar{\nu}) + p \rightarrow \nu(\bar{\nu}) + (\Delta^{+} \rightarrow p + \pi^{0} \text{ or } n + \pi^{+})
$$

\n
$$
\nu(\bar{\nu}) + n \rightarrow \nu(\bar{\nu}) + (\Delta^{0} \rightarrow p + \pi^{-} \text{ or } n + \pi^{0})
$$

Dimensionality of the problem

+1 invariant variable: the cross section is always symmetric w.r.t. 1 azimuthal angle, e.g., ϕ_{μ}

Adler-Rarita-Schwinger formalism

Double-**differential cross section** for the ∆ **production**:

$$
\frac{\mathrm{d}\sigma}{\mathrm{d}W\mathrm{d}Q^2} = G^2 \cos^2\theta_C \frac{Wg(W)}{\pi^2 M E_\nu^2} \left[-(Q^2 + m^2)V_1 + \frac{V_2}{M^2} \left(2(pq)(pk') \frac{M^2}{2} (Q^2 + m^2) \right) \right. \\ - \frac{V_3}{M^2} \left(Q^2(kp) - \frac{1}{2} (Q^2 + m^2)(pq) \right) + \frac{V_4}{m^2} \frac{m^2}{2} - 2\frac{V_5}{M^2} m^2(kp) \right]
$$

where *Vⁱ* are structure functions made of **hadronic tensor elements** and

$$
g(W) = \frac{\Gamma_{\Delta}/2}{(W - M_{\Delta})^2 + \Gamma_{\Delta}^2/4}
$$

is the **Breit-Wigner** formula introducing the ∆ **width** (Γ∆)

S. L. Adler, Annals Phys. 50 (1968) 189-311; S. L. Adler, Phys.Rev. D12 (1975) 2644

[New SPP in NuWro](#page-0-0) 21.10.2019 9/36

Rarita-Schwinger field Ψ_{μ}

- \rightarrow The **final hadronic state** is a $\frac{3}{2}$ -**spin resonance** described as a **Rarita**-**Schwinger field**
- [→] The **transition** from the **nucleon** to, e.g., [∆]++ **state** is given as a matrix element of the **weak hadronic current**: $\mathcal{J}^{CC}_\mu = \mathcal{J}^V_\mu + \mathcal{J}^{\mathcal{A}}_\mu$

$$
\langle \Delta^{++}(p') | \mathcal{J}_{\mu}^V | N(p) \rangle = \langle \Delta^{++}(p') | \mathcal{J}_{\mu}^A | N(p) \rangle =
$$

\n
$$
\sqrt{3} \bar{\Psi}_{\lambda}(p') \left[g_{\mu}^{\lambda} \left(\frac{C_3^V(Q^2)}{M} \gamma_{\nu} + \frac{C_4^V(Q^2)}{M^2} p_{\nu}' \right) \right. \left. \sqrt{3} \bar{\Psi}_{\lambda}(p') \left[g_{\mu}^{\lambda} \left(\gamma_{\nu} \frac{C_3^A(Q^2)}{M} + \frac{C_4^A(Q^2)}{M^2} \right) q^{\nu} \right. \right.\n+ \frac{C_5^V(Q^2)}{M^2} p_{\nu} \right) q^{\nu} - q^{\lambda} \left(\frac{C_3^V(Q^2)}{M} \gamma_{\nu} \right. \left. \left. - q^{\lambda} \left(\frac{C_3^A(Q^2)}{M} \gamma_{\mu} + \frac{C_4^A(Q^2)}{M^2} p_{\mu}' \right) \right. \right.\n+ \frac{C_4^V}{M^2} p_{\nu}' + \frac{C_5^V(Q^2)}{M^2} \right) \Big] \gamma_5 u(p) \left. + g_{\mu}^{\lambda} C_5^A(Q^2) + \frac{q^{\lambda} q_{\mu}}{M^2} C_6^A(Q^2) \right] u(p)
$$

Hadronic tensor $W_{\mu\nu}$

Defined as

$$
W_{\mu\nu} = \frac{1}{4MM_{\Delta}} \frac{1}{2} \sum_{\text{spin}} \left\langle \Delta^{++}(p') \right| \mathcal{J}_{\mu}^{CC} |N(p)\rangle \left\langle \Delta^{++}(p') \right| \mathcal{J}_{\nu}^{CC} |N(p)\rangle^*
$$

$$
\times \frac{\Gamma_{\Delta}/2}{(W - M_{\Delta})^2 + \Gamma_{\Delta}^2/4}
$$

Γ∆(*W*) is the ∆ width, for which we assume the P-wave (l=1) expression

$$
\Gamma_{\Delta} = \Gamma_0 \left(\frac{q_{cm}(W)}{q_{cm}(W_{\Delta})} \right)^{2l+1} \frac{M_{\Delta}}{W}
$$

with

$$
q_{cm}(W)=\sqrt{\left(\frac{W^2+M^2-m_\pi^2}{2W}\right)^2-M^2}
$$

 $\Gamma_0 = 120$ MeV, $M_\Delta = 1232$ MeV, $m_\pi = 139.57$ MeV

Form Factors

Elementary information lies in **vector** and **axial form factors** *C V*,*A i*

There are **several parametrizations available** in NuWro

Our default choice:

 C_5^A axial form factor from bubble chamber experiments [K. M. Graczyk, D. Kielczewska, P. Przewlocki, and J. T. Sobczyk, Phys.Rev. D80 (2009) 093001]

- → A **consistent fit** to **both ANL** and **BNL** data
- [→] **Only** [∆]++ channel **assuming** there is **no background**
- \rightarrow **Consistency with NuWro**: only Δ^{++} in the given channel

Dipole parametrization, $M_A = 0.94$ GeV, $C_5^A(0) = 1.19$!

+ vector part from [O. Lalakulich, E. A. Paschos, G. Piranishvili, Phys.Rev. D 74 (2006) 014009]

Comparison with ANL/BNL data

→ **a simultaneus fit to ANL and BNL that shows their consistency !**

K. M. Graczyk, D. Kielczewska, P. Przewlocki, and J. T. Sobczyk, Phys.Rev. D80 (2009) 093001

Dimensionality of the problem

+1 invariant variable: the cross section is always symmetric w.r.t. 1 azimuthal angle, e.g., ϕ_{μ}

Pion production off a nucleon

To produce an event, one needs **information about** the **produced pion**

Delta decays in the **hadronic CMS**:

$$
\frac{\mathrm{d}^2 \sigma_{\Delta}}{\mathrm{d} Q^2 \mathrm{d} W} \to \frac{\mathrm{d}^4 \sigma_{\pi}}{\mathrm{d} Q^2 \mathrm{d} W \mathrm{d} \Omega_{\pi}^*} \times f_{\Delta}(\Omega_{\pi}^*)
$$

Pion angular distributions are essential to **generate** the **kinematics**

In **NuWro**, it is taken from **experimental results** (ANL or BNL):

S.J. Barish et al., Phys.Rev. D19 (1979) 2511

G.M. Radecky et al., Phys.Rev. D25 (1982) 1161

T. Kitagaki et al., Phys.Rev. D34 (1986) 2554

FIG. 15. Distribution of events in the pion polar angle cos θ for the final state $\mu^- p \pi^+$, with $M(p \pi^+)$ < 1.4 GeV. The curve is the area-normalized prediction of the Adler model.

Radecky et al. [ANL Collaboration], PRD 25 (1982) 1161

Pion production in NuWro

Deep inelastic scattering in NuWro

Events with invariant mass W > 1.6 GeV are Events with invariant mass *W* > 1.6 GeV are considered within the quark-parton model and labeled as DIS:

> $\nu + N \rightarrow l^- + X$ $\bar{\nu} + N \to l^{+} + X$ $\nu(\bar{\nu}) + N \rightarrow \nu(\bar{\nu}) + X$

DIS cross section

Double-differential cross section expressed in terms of $x = Q^2/2M\omega$, $y = \omega/E_\nu$:

$$
\frac{\mathrm{d}\sigma}{\mathrm{d}x\mathrm{d}y} = \frac{G^2 M E_\nu}{\pi (1 + Q^2 / M_{W,Z}^2)^2} \left[y \left(xy + \frac{m^2}{2E_\nu M} \right) F_1(x, Q^2) + \left(1 - y - \frac{Mxy}{2E_\nu} - \frac{m^2}{4E_\nu^2} - \frac{m^2}{2M E_\nu x} \right) F_2(x, Q^2) + \left(xy \left(1 - \frac{y}{2} \right) - y \frac{m^2}{4M E_\nu} \right) F_3(x, Q^2) \right]
$$

where *F*1,2,³ are expressed by the **parton distribution functions**

[→] **GRV95 parametrization + low-***Q*² **Bodek-Yang corrections**

Hadronization

\rightarrow Hard-crafted **parameters tuned** to **experimental data**

Transition region & Non-resonant background

The **background extrapolated** from the **DIS** region (SPP + more)

Smooth SPP transition from **RES** to **DIS** in the W range (1.3, 1.6) GeV:

$$
\frac{\mathrm{d}\sigma^{\mathrm{SPP}}}{\mathrm{d}W} = \frac{\mathrm{d}\sigma^{\Delta}}{\mathrm{d}W} (1 - \alpha(W)) + \frac{\mathrm{d}\sigma^{\mathrm{DIS}}}{\mathrm{d}W} F^{\mathrm{SPP}} \alpha(W)
$$

where α (*W*) assures a **smooth transition** and $\bm{\mathit{F}}^{\mathrm{SPP}}$ is the **fraction** of **single pion production** in DIS

$$
\alpha(W) = \Theta(W_{min} - W) \frac{W - W_{th}}{W_{min} - W_{th}} \alpha_0
$$

+
$$
\Theta(W_{max} - W) \Theta(W - W_{min}) \frac{W - W_{min} + \alpha_0(W_{max} - W)}{W_{max} - W_{min}}
$$

+
$$
\Theta(W - W_{max})
$$

Kaietan Niewczas **[New SPP in NuWro](#page-0-0) 21.10.2019** 20/36

Pion production in NuWro

We have

 \rightarrow a very good description on the Δ peak

but

- \rightarrow an incoherent sum of the resonant part and the background
- \rightarrow disentangled pion angular distributions
- \rightarrow only one resonance

The Hybrid model of the Ghent group

The Hybrid model of the Ghent group

References:

- *Neutrino-induced pion production from nuclei at medium energies*, C. Praet, O. Lalakulich, N. Jachowicz, J. Ryckebusch, Phys. Rev. C79 (2009) 044603, arXiv:0804.2750
- *Electroweak single-pion production off the nucleon: from threshold to high invariant masses*, R. González Jiménez, N. Jachowicz, K. Niewczas, J. Nys, V. Pandey, T. Van Cuyck, N. Van Dessel, Phys. Rev. D95 (2017) 113007, arXiv:1612.05511
- *Pion production within the hybrid-RPWIA model at MiniBooNE and MINERvA kinematics*, R. González Jiménez, K. Niewczas, N. Jachowicz, Phys. Rev. D97 (2018) 093008, arXiv:1710.08374
- *Modeling neutrino-induced charged pion production on water at T2K kinematics*, A. Nikolakopoulos, R. González Jiménez, K. Niewczas, J. Sobczyk, N. Jachowicz, Phys. Rev. D97 (2018) 093008, arXiv:1803.03163
- *Nuclear effects in electron- and neutrino-nucleus scattering within a relativistic quantum mechanical framework*, R. González Jiménez, A. Nikolakopoulos, N. Jachowicz, J.M. Udias, arXiv1904:10696, accepted for publication in PRC

Single pion production on the nucleon (Ghent)

Resonances

P33 (1232), P11(1440), D13 (1520), S11 (1535)

+ ChPT background

Cfr. PRC 76, 033005 (2007), PRD87, 113009 (2013)

N. Jachowicz

Single pion production on the nucleon (Ghent)

N. Jachowicz

Single pion production on the nucleon (Ghent)

T. Corthals, PhD, UGent 2005

N. Jachowicz

Implementation in Monte Carlo event generators

S ingle pion production on the nucleon

5 Four vectors = 5x4 = 20 variables

- 4 : on mass shell relations - 4 : initial nucleon known (at rest) - 4 : Energy-momentum conservation - 3 : Freedom to choose reference frame And invariance along q (known direction of one four vector)

= 5 independent variables

$$
E_{v}
$$
, $\cos\theta_{l}$, E_{l} , Ω_{π}^{*} or $E_{v}^{Q^{2}}W$, Ω_{π}^{*}

A. Nikolakopoulos

Single pion production on the nucleon

One can exploit certain properties of such system μ operates or such system

FIG. 3. Definition of the scattering and reaction planes. The $X^*Y^*Z^*$ coordinate axes move along with the CM system of the final pion-nucleon and their orientation has been chosen in such a way that the lepton momenta lie in the $O^*X^*Z^*$ plane with the positive Z^* axis chosen along \vec{q} and the positive Y^* axis chosen along $\vec{k} \wedge \vec{k}'$.

as proposed in [J.E. Sobczyk et al., Phys.Rev. D98 (2018) 073001]

S ingle pion production on the nucleon

 $\sigma \propto L^{\mu\nu}(k_1,k_2) \times H_{\mu\nu}(k,q,p_2)$ Leptonic part (PW approximation) \rightarrow known Hadronic part \rightarrow modelling effort

Exploit these facts:

-Lepton tensor is known -Hadronic part is invariant under rotation along q and is the product of Hadronic current with its conjugate

 \rightarrow Separate the φ^* dependence

$$
\frac{d\sigma}{dQ^2 dW d\Omega^*_{\pi}} = \frac{\mathcal{F}^2}{(2\pi)^4} \frac{k_{\pi}^*}{k_l^2} \times [A + B \cos{(\phi^*)} C \cos{(2\phi^*)} + D \sin{(\phi^*)} + E \sin{(2\phi^*)}]
$$

A. Nikolakopoulos

Single pion production on the nucleon *Separating the variables*

A. Nikolakopoulos

Implementation in Monte Carlo event generators

The first step:

- \rightarrow tabularize 5 hadronic tensor elements as functions of (W, Q^2)
- \rightarrow each time obtain the structure function A
- \rightarrow sample events with double-differential cross section formula
- \rightarrow add experimental pion angular distributions

The second step:

- \rightarrow compute the structure functions A,B,C,D,E (*W*, Q^2 , cos^{*} θ_{π}) directly from a model
- \rightarrow sample events with a full 4-differential cross section formula

Implementation of the Ghent model

$$
\nu_{\mu} + \mathbf{p} \rightarrow \mu^{-} + \mathbf{p} + \pi^{+}
$$

Implementation of the Ghent model

HNV, DCC and LEM vary in structure functions, still more or less agree on angular cross section. (Around Delta peak)

Could this influence neutrino oscillation analysis ?

A. Nikolakopoulos

Implementation of the Ghent model

A. Nikolakopoulos

Problems and issues